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I. INTRODUCTION

Detecting structured signals in noisy time-series data is a
fundamental problem across various scientific and engineering
domains. The classical way to approach this problem is
Matched Filtering (MF) [1], which relies on an exhaustive
search over a precomputed template bank. However, as the
dimension of the signal manifold grows, this method becomes
unsuitable for performing a search. Template Optimization
(TpopT) [2] was introduced as an alternative to MF, the
idea being to use optimization to efficiently search for best-
matching templates instead of testing the whole bank. While
TpopT achieves its goal, it makes an assumption that the
position of the structured signal within the noisy observation
is fixed, making it unsuitable for problems where signals may
appear at unknown time shifts.

The purpose of this project is to develop Convolutional
TpopT (CpopT), designed to efficiently detect and estimate
signals with no previous assumptions about the structured
signal location.

II. TECHNICAL APPROACH

A. Problem Setup

We study gravitational wave signals produced by the merg-
ing of two black holes. These signals are determined by phys-
ical parameters, implicitly define the shape of the gravitational
waveform:

• m1,m2: masses of the black holes
• s1, s2: spins (angular momentum)
• h(t) := waveform generated from (m1,m2, s1, s2)

In our setup, we assume that a single waveform is embedded
within a longer observation contaminated by noise. This
observed signal can be modeled as:

x(t) = h(t− τ) + η (1)

where:
• τ : unknown insertion time (shift)
• η: Noise
• dim(x(t)) ≫ dim(h(t))

For the sake of this project we assume that the noise is
a random Gaussian noise. Exploring other types of noise,
including the ones that will more closely mimic the signals
we receive from space, is left for future work. To conduct
experiments and explore the behavior of gravitational waves
in this setting, we generated a bank containing synthetic
gravitational waves. We used a Python package called PyCBC
[3], which follows the rules of General Relativity and is a
standard library for experimenting with gravitational waves.
The bank contains 30000 waves, each has a length of 2048.
The length of the noisy observation x(t) is fixed at 10000.

B. Problem Formulation
Let H = {hi(t)}30000i=1 denote the bank of gravitational

waveforms, each of length 2048. The observed signal x(t) ∈
R10000 is assumed to be a noisy mixture containing one such
waveform, inserted at an unknown time shift τ .

We aim to recover the gravitational waveform hi ∈ H and
the unknown shift τ ∈ {0, 1, . . . , D} that best match the noisy
observation x. This is naturally posed as a maximization of
the cross-correlation between hi and all 2048-length windows
of x:

(ĥ, τ̂) = arg max
hi∈H, τ

2047∑
t=0

hi(t) · x(t+ τ) (2)

Equivalently, using inner product notation:

(ĥ, τ̂) = arg max
hi∈H, τ

⟨hi, xτ ⟩ (3)

where xτ (t) = x(t + τ) is the segment of x starting at
position τ . This formulation defines our optimization prob-
lem: recover the waveform and its location by maximizing
alignment with the observed signal.

Due to the large size of the waveform bank and possible
shifts, exhaustively evaluating all combinations is computa-
tionally inefficient. We therefore seek efficient methods to
evaluate the correlation objective without scanning the entire
search space. This includes using FFT-based correlation and
dimensionality reduction techniques discussed in the following
sections.



C. Computing Correlation

As introduced in Equation (2), the core computation in-
volves evaluating the cross-correlation between a waveform
h ∈ R2048 and a noisy observation x ∈ R10000, across all
valid shifts τ . Performing this directly for all shifts would
require thousands of inner product evaluations per waveform,
which is computationally intensive.

To mitigate this cost, we leverage the convolution theorem
to compute correlations efficiently using the Fast Fourier
Transform (FFT). This reduces the computational complexity
to O(L logL), where L is the length of the padded signals.

The computation proceeds as follows:
• Zero-pad both h and x to length L = len(x) + len(h)−

1, ensuring valid linear correlation and avoiding wrap-
around effects.

• Compute the correlation over all shifts using:

corr(h, x)[τ ] = DFT−1 (DFT(x) ·DFT(h)∗) [τ ] (4)

Here, DFT(h)∗ denotes the complex conjugate of the Fourier
transform of h. The derivation of Equation (4) is provided in
Appendix A.

D. Embedding Waveforms into Low-Dimensional Space

As shown later in the ”Experiments” section, the parameters
forming the waveform (m1,m2, s1, s2) fail to capture the
relationship between different waves, i.e. a small change
in these parameters might result in a completely different
waveform. Thus, there is a need to embed waveforms into a
low-dimensional space where similar waveforms will lie next
to each other.

1) Standard MDS Embedding: Let d(i, j) denote a distance
metric between waveforms hi and hj . In the standard setting,
we define this as the Euclidean distance between the raw
waveforms:

d(i, j) = ∥hi − hj∥ (5)

We apply classical Multidimensional Scaling (MDS) to
embed each waveform into R2. MDS maps:

hi 7→ ξi =

(
β
(i)
1

β
(i)
2

)
∈ R2 (6)

such that the distances in the embedded space approximate the
original distances:

∥ξi − ξj∥ ≈ d(i, j) (7)

While this embedding captures global waveform geometry
under Euclidean distance, it fails to account for temporal
misalignments, i.e., waves that are similar to a phase shift
are considered to be far from each other.

2) Shift-Invariant MDS Embedding: To address this limi-
tation, we redefine d(i, j) using the best-alignment distance:

dshift(i, j) = min
τ

∥hi − h
(τ)
j ∥ (8)

where s
(τ)
j is the waveform sj shifted by τ and aligned with

si to maximize their cross-correlation.

We then apply MDS to the resulting distance matrix:

hi 7→ ξ
(inv)
i =

(
β
(i)
1

β
(i)
2

)
∈ R2 (9)

such that:
∥ξ(inv)

i − ξ
(inv)
j ∥ ≈ dshift(i, j) (10)

This shift-invariant embedding shows improvement over
classical MDS, as shown in the Experiments section.

III. EXPERIMENTS

We visualize and evaluate our method on synthetic gravi-
tational wave signals generated using PyCBC. We begin by
showing a sample waveform generated from physical param-
eters (m1, s1):

Fig. 1. Generated waveform h(t) from (m1,m2, s1, s2).

Figure 2 shows the noisy observation x(t), where the
waveform is inserted at an unknown shift τ :

Fig. 2. Observed noisy signal x(t) = h(t− τ) + η.

To analyze the geometry of the correlation objective, we
visualize the landscape in three different representations of
the waveform space:

• The original physical parameter space (m1 = m2, s1 =
s2),

• A 2D MDS embedding using Euclidean waveform dis-
tances,

• A 2D shift-invariant MDS embedding using aligned
waveform distances.



Fig. 3. Objective landscape across original parameter space

Fig. 4. Objective landscape across Euclidean embedding space

Each point in the landscape (Figure 3) corresponds to a
waveform template, and color indicates the maximum cross-
correlation score with the observation. The landscape shows
that the surface is highly irregular and sensitive to parameter
changes, making it unsuitable for gradient-based search.

For the landscapes in the embedding space, the grid di-
mensions are 30× 30, where axes correspond to the (β1, β2)
coordinates in Equation (6). For each point on the grid, we
selected the waveform whose embedding is nearest to the
corresponding location in the grid. Figure 4 is constructed
using standard MDS. We embed the waveforms into R2 based
on Euclidean distances. This improves the landscape compared
to the original parameter space, but there is a clear issue with
local maxima due to phase misalignment.

Fig. 5. Objective landscape (smoothed) across shift-invariant embedding
space

Figure 5 takes into account phase shifts, which solves the
issue with local maxima. However, as shown in Figure 6, the
raw landscape remains bumpy and requires smoothing to be
usable for optimization.

Fig. 6. Unsmoothed shift-invariant landscape.

Fig. 7. Shift-invariant landscape + k-NN

To address the irregularities observed in the raw shift-
invariant landscape (Figure 6), we propose a strategy based
on k-nearest neighbors in the embedding space. Instead of
selecting the closest wave with (β1, β2) coordinates in the
embedding space to represent a square in the grid, we look
into the k nearest waveforms for each grid coordinate and
select the one that has the highest cross-correlation.

This approach produces a significantly smoother surface, as
shown in Figure 7, without the need for any post-processing
techniques. However, it comes with the cost of being computa-
tionally inefficient. In order to evaluate the best match among
the k-nearest neighbors for each grid point, to cover the whole
grid, the method requires scanning through the entirety of the
waveform bank. As a result, this method has no advantage
over the brute-force template matching approach.

To validate that this smoother region captures the correct
waveform, we compare the ground truth waveform and the
best match obtained via the k-NN approach after alignment:

Fig. 8. Alignment of the ground truth waveform and the best match from the
k-NN refined landscape.

Figure 8 shows that the wave corresponding to the maxi-
mum correlation point in the grid very closely approximates
the ground truth.



IV. DISCUSSION AND FUTURE WORK

While the shift-invariant embedding shows the highest po-
tential by resolving phase misalignment issues, it remains sur-
prisingly bumpy in the region around the maximum correlation
point. This raises a question: why do some waveforms that are
embedded close together in the shift-invariant space still show
low correlation?

To investigate this, we examine the similarity between
waveforms near the maximum correlation point. Figure 9
compares the aligned ground truth waveform with the worst
neighbor (in terms of correlation) among the k = 33 nearest
waveforms in the embedding space.

Fig. 9. Aligned ground truth vs. worst correlated waveform among k = 33
nearest neighbors in embedding space.

Even though the waves were selected from nearby coor-
dinates in the embedding space, the correlation statistics in
Figure 10 reveal that some are poorly correlated with both the
noisy observation and the ground truth.

Fig. 10. Correlation and Euclidean distance statistics between X (noisy
observation), ground truth, and best and worst waves (in terms of correlation
with X). Poorly correlated waves can still appear close in the embedding
space.

Experiments suggest that nearby waves in the shift-invariant
embedding space are not necessarily similar. Future work
should investigate the root causes of this phenomenon. A
better embedding approach may be necessary, one that will
be explicitly targeting the objective of embedding similar
waves together. Additionally, future efforts could develop
an optimization-based approach for waveform selection that
avoids exhaustive search.
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APPENDIX A
DERIVATION OF CORRELATION VIA FFT

The purpose of this section is to provide a derivation of
Equation (4). Here I re-derived the formula by referring to

Professor John Wright’s notes on CpopT, and tried to pro-
vide some intuitive understanding of the relationship between
correlation and convolution.

Let’s start with the definition of convolution between two
signals x and h:

(x ∗ h)[τ ] =
L−1∑
n=0

x[n] · h[τ − n] (11)

For correlation, we’re essentially computing the convolution
of signal x with the time-reversed version of signal h. Let’s
denote the time-reversed version of h as h̃[n] = h[−n]. Then
the correlation can be expressed as:

corr(h, x)[τ ] = (x ∗ h̃)[τ ]

=

N−1∑
n=0

x[n] · h̃[τ − n]

=

N−1∑
n=0

x[n] · h[n− τ ] (12)

This formulation shows the connection between correlation
and convolution, allowing us to leverage the efficient compu-
tational properties of convolution.

We know that convolution in time domain is multiplication
in frequency domain:

(x ∗ h)[τ ] = DFT−1{DFT{x} ·DFT{h}}[τ ] (13)

To apply this to our correlation calculation, we need to
determine how the DFT of the time-reversed signal h̃ relates
to the DFT of the original signal h. For a signal of length L,
we can derive this relationship:

DFTL{h̃[n]} =

L−1∑
n=0

h̃[n]e−j 2π
L kn (14)

=

L−1∑
n=0

h[−n]e−j 2π
L kn (15)

Let’s make a change of variables by setting m = −n+ L.
This gives us:

DFTL{h̃[n]} =

L−1∑
n=0

h[−n]e−j 2π
L kn (16)

=

1∑
m=L

h[m− L]e−j 2π
L k(L−m) (17)

=

L∑
m=1

h[m− L]e−j 2π
L kLej

2π
L km (18)

=

L∑
m=1

h[m− L]e−j2πkej
2π
L km (19)

=

L∑
m=1

h[m− L]ej
2π
L km (20)

since e−j2πk = 1 for k ∈ Z



The sum can be rewritten with adjusted indices to match
our usual DFT form:

DFTL{h̃[n]} =

L−1∑
m=0

h[m]ej
2π
L km (21)

=

(
L−1∑
m=0

h[m]e−j 2π
L km

)∗

(22)

= DFT∗
L{h[n]} (23)

Therefore, the DFT of a time-reversed signal equals the
complex conjugate of the original signal’s DFT.

Substituting this into the convolution theorem, our correla-
tion becomes:

corr(h, x)[τ ] = (x ∗ h̃)[τ ] (24)

= DFT−1{DFT{x} ·DFT{h̃}}[τ ] (25)

= DFT−1{DFT{x} ·DFT∗{h}}[τ ] (26)

Intuitively, correlation is pretty similar to convolution. Ex-
cept, rather than following the usual ”flip, shift, multiply, add”,
correlation does not want to flip the signal, so we ”double
flip” the signal to cancel out this step in convolution. This is
mathematically equivalent to convolving signal x with a time-
flipped version of h. The time-flipping operation (replacing
h[n] with h[−n]) effectively creates a ”template” that we slide
across x to find where it best matches.

In the frequency domain, this time-reversal operation trans-
lates to taking the complex conjugate of the Fourier transform.
This allows us to compute correlations efficiently using FFT,
reducing the computational complexity to O(L logL).

REFERENCES

[1] B. J. Owen and B. S. Sathyaprakash, “Matched filtering of gravitational
waves from inspiraling compact binaries: Computational cost and
template placement,” Physical Review D, vol. 60, no. 2, Jun. 1999.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevD.60.022002

[2] J. Yan, S. Wang, X. R. Wei, J. Wang, Z. Márka, S. Márka, and J. Wright,
“Tpopt: Efficient trainable template optimization on low-dimensional
manifolds,” 2023. [Online]. Available: https://arxiv.org/abs/2310.10039

[3] A. Nitz, “gwastro/pycbc: v2.3.3 release of PyCBC,”
https://doi.org/10.5281/zenodo.10473621, Jan. 2024, zenodo, Jan.
09, 2024.


