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Abstract—The increased integration of renewable energy re-
sources into the power grid necessitates energy storage units
to mitigate the instability of their power generation. Energy
storage arbitrage is the charging and discharging strategy that
maximizes this revenue. However, determining the optimal mech-
anism to govern their behavior is an open research question.
Reinforcement learning is quickly becoming a popular tool to
solve this problem due to its flexibility and ability to encode
historical data. This paper develops a deep Q-learning (DQN)
agent that represents an energy storage unit participating in the
electricity market. Through real-world market simulations, it is
demonstrated that the DQN agent with the highest performance
is the one that always bids slightly below the real-time price of
electricity.

Index Terms—Reinforcement learning, deep Q-learning, en-
ergy storage, power system economics, bidding, market power

I. INTRODUCTION

The electricity market in the United States has seen a
rapid transformation over the last two decades. Originally
established as vertically integrated entity over a century ago,
recent years have witnessed the deregulation of the electric
system to mitigate inefficiencies caused from government
monopolies. This development was finalized at the turn of the
century, when electrical energy was first officially considered a
commodity and markets were created for trading. The benefits
of this unbounding are the promotion of competition, increased
system transparency, and a fair market in the sense that no
system operator will favor one generator over another [1].

The structure of the electricity market facilitates a vast array
of different types of generators that can enter in their bids for
energy generation. In addition, the physical constraints of the
power grid requires that supply has to meet demand at all
time. In order to achieve this, system operators decide which
generators to dispatch to meet demand at each time step [2].
Each generation unit submits a bid that represents the amount
of deliverable power and their marginal cost of generation.
The bids are aggregated by the system operator and cleared
in merit order from lowest price to highest. The clearing price
is defined by the point where supply and demand meet. Once
this is determined, all generators that are cleared to produce
energy will receive the clearing price [3].

Decarbonizing energy systems through a cleaner power
grid is essential for combating climate change. Decarboniza-
tion has demanded an increase in energy storage systems

to mitigate the instability associated with variable renewable
energy resources (VRE) [4]. Energy storage systems (ESS)
play a critical role in providing energy to the power grid
when VRE output is low. Additionally, energy storage systems
can generate revenue via arbitrage by charging at low prices
and discharging at high prices. The optimal mechanism for
ESS bidding strategies to maximize both revenue and system
reliability is currently an open research question.

Mixed integer linear programming (MILP) was one of the
first techniques proposed to solve energy storage arbitrage.
Krishnamurthy et al. provide an updated framework for this,
focusing on incorporating the stochasticity of energy price into
their optimization model [5]. However, MILP algorithms face
the canonical curse of dimensionality when increasing problem
complexity and also an inability to handle non-linear relation-
ships without introducing approximations. Stochastic dynamic
programming (SDP) is another approach for determining opti-
mal arbitrage strategies. It has a flexible architecture for incor-
porating uncertainty in electricity price demonstrates improved
results when benchmarked against MILP [6].

Reinforcement learning is quickly becoming one of the
most popular methods for energy storage arbitrage. A major
advancement of RL over typical optimization techniques is
the enablement of offline learning; decoupling the expen-
sive learning portion from the real-time decision process. Q-
Learning algorithms are a simple but effective solution choice
by discretizing the possible bidding action space. Formulations
can vary from the point of view of the system operator or
the generator, but designers typically try to encode historical
price information in the reward function and use Monte
Carlo simulations for testing case studies [7], [8]. Deep Q-
Learning (DQN) is another option, and is typically applied to
represent generator agents. DQN is preferred over Q-Learning
due to its ability to handle larger and more complex state
spaces that more accurately represent the dynamics of the
electricity market [9]. Multi-agent learning is emerging as
popular strategy by modeling more of players in the electricity
market [10].

However, no matter the complexity of the RL technique
used, almost the entire body of literature is dedicated to
modeling uncertainty in electricity price, VRE output, and
consumer demand. This paper seeks to address that gap in
the literature by expanding the uncertainty considerations into
the electricity market itself. Our model presents a novel and



lightweight methodology for representing the uncertainty of
a bid being accepted into the market during both training
and evaluation. DQN was the selected RL algorithm due to
its ability to learn complex state spaces while maintaining an
efficient implementation. The contributions of this paper are:

1) A DQN algorithm is used to learn the optimal bidding
behavior of an energy storage system.

2) A novel method for representing the uncertainty of bids
being accepted in training allows for the DQN agent to
target conservative, neutral, or risky strategies.

3) A realistic market simulation is created for evaluation
that directly computes the bidding curve of the partici-
pating generators. 1

The paper is organized as follows. Section II presents
the methods implemented such as the design of the market
simulation, the bidding uncertainty, and the DQN network.
Section III presents the results and Section IV provides a
discussion of insights observed and concludes the paper.

II. METHODS

A. Energy Storage Formulation
Energy storage arbitrage is a relatively well-studied prob-

lem. A battery can be simply defined as:
• E : Storage capacity (MWh), the total amount of energy

that can be stored in the battery
• Pmax : Power capacity (MW), the maximum charge and

discharge rate of the battery as seen by the grid operator
• η : Charge/discharge efficiency of the battery
• SOC : State-of-Charge (unitless), in [0, 1] indicating the

fraction of the total storage capacity, E, that a battery
currently is charged to

Of these four variables, only the SOC evolved through time
while the rest act as constraints and time evolution factors:

SOCt =SOCt−1 + (ptη − bt/η)/E

0 ≤ bt ≤ Pmax

0 ≤ pt ≤ Pmax

pt× bt = 0

SOCt ∈ [0, 1] ∀ t

Here, pt is the charging power at time t and bt is the
discharging power (positive) at time t. Because simultaneous
charging and discharging is disallowed, at least one of pt and
bt must be zero at each time step.

This simplified battery model does not account for other
important factors such as fixed discharge costs, resting draw,
and non-linear charge/discharge efficiencies at different SOC
levels.

B. Market Simulation
The market simulation is built to emulate the real-time

market as closely as possible while minimizing computational
complexity. Due to the high complexity of electricity markets
and many simplifications made to rapidly develop this sim-
ulator, not all inaccuracies and deviations from real market
operations are detailed here.

1[Code Available]: https://github.com/nmadev/EnergyStorageRLBidder

1) Theory of Market Clearing: At each timestep in the real-
time market, all bidders participate via submitting price bids
to charge/discharge at full power capacity at that timestep.
Typically, energy storage units will bid for both charging and
discharging, i.e. the battery operator will submit a minimum
price at which they will fully discharge at as well as a
maximum price at which they will fully charge at.

Once these bids are collected, the system operator de-
termines whether the grid needs more power (positive de-
mand/batteries will be dispatched the discharge) or the grid has
excess power (negative demand/batteries will be dispatched to
charge). Market clearing, as displayed in Fig. 1, follows the
same procedure for both charging and discharging with slight
modifications.

Fig. 1. Market clearing example for positive demand

Bids are sorted in merit order, or increasing in price, if
demand is positive and in reverse merit order, or decreasing
in price, if demand is negative. The demand at the timestep
is then used to determine the clearing price. All of the bids
below the demand at the timestep, including the bid that fully
satisfies demand, are cleared in order. The clearing price is
set at the price of the bid that fully clears the demand. All
cleared bids receive the clearing price for charging/discharging
at that time. All bids above the clearing bid are not cleared,
the corresponding batteries do not charge/discharge.

If the battery that submitted the clearing bid only needs
to partially charge/discharge to satisfy demand, that battery
will only be cleared partially. If multiple bids are submitted
at the clearing price, some bids will be selected at random to
be cleared. One important distinction to note is the difference
between real-time price and clearing price. In the real market,
real-time price is set as the clearing price at all times. In
this simulation, the real-time price is taken as the bid of
honest bidders, as described in section II-C. The market is
then simulated with these bids and bids from trained bidders
to determine a clearing price. This choice was intentional to
allow market interaction by the

Once this clearing process has finished, the appropriate
power and corresponding cost/revenue is returned to each
energy storage unit and the market simulation is stepped to
the next timestep.

2) Data Integration: Historical energy data is obtained [11]
by scraping California Independent System Operator (CAISO)
Daily Energy Storage Reports [12]. This includes hourly and



sub-hourly data for real-time price, day-ahead price, energy
storage awards, and bid distributions among many other energy
storage-related fields. From this comprehensive dataset, the
real-time price and energy storage awards data are used.
The former is used both to train the bidders and to directly
determine bids for “honest” bidders, as detailed in the next
section. The energy storage awards, or the historical cleared
and dispatched battery capacity, is used in the market simulator
to determine the amount of capacity cleared in the market.
These data are also averaged on a time-of-day basis to be used
in the clearing probability function for training each bidder,
explained in greater detail in sections II-D2 and II-D3.

C. Honest Bidder

Honest bidders are created to simulate market participation
by conventional thermal generators. In electricity markets,
thermal generators are typically required to bid at their
marginal cost and cannot arbitrarily raise and lower their bids
like energy storage units can. The capacity of these generators
typically heavily outweigh the capacity bid by energy storage
and are much larger factors in determining the clearing price
at any given time. However, as the interconnected capacity
of energy storage units increase sharply, the proportion of the
market made up by honest bidders decreases.

Honest bidders are simulated as energy storage units that
always submit bids, λb

t , exactly at the real-time price, λRTP
t :

λb
t = λRTP

t

The higher the proportion of total market capacity that is taken
up by these bidders, the closer the real-time price and market
clearing price are expected to be.

D. Deep Q-Learning Bidder

The Deep Q-Learning Bidder optimizes the revenue of
energy storage arbitrage systems by simulating various bidding
strategies within a real-time electricity market environment.
The state space includes Real-Time Price (RTP), State of
Charge (SOC), and the timestamp. The action space consists
of a set of discrete bidding multipliers at ∈ {0, 0.1, ..., 2.0},
which scale the RTP to determine the bid price:

bidt = at × RTPt

The environment behaves as an offline market simulator where
the probability of bid acceptance is influenced by the current
bid. The reward function is designed as follows:

rt =

{
power× clearing price× granularity Bid accepted
0 Bid not accepted

1) DQN Network: The DQN network consists of the fol-
lowing components:

• Input: State features: RTP, SOC, and the timestamp.
• Hidden Layers: Two fully connected layers with 64

neurons each, using ReLU activation function.
• Output: Q-values for all possible bidding actions.
The cleared_action function introduces bidding un-

certainty, enabling the DQN agent to adapt its behavior based

on conservative, neutral, or risky strategies. The full imple-
mentation, including state updates, reward calculations, and
Q-network optimization is presented in Algorithm 1.

Algorithm 1 DQN for Energy Storage Bidding in RT Market
1: Input: Learning rate lr, discount factor γ, batch size

batchsize, episodes episodes, replay buffer buffer, mar-
ket data data, ϵ-decay schedule

2: Output: Optimized Q-network ω
3: Initialize Q-network ω and replay buffer buffer
4: Initialize action space A = {0.0, 0.1, . . . , 2.0}
5: for each episode e = 1, 2, . . . , episodes do
6: s0 ← (RTP, 0.5, ts) ▷ SOC initialized to 0.5
7: Initialize cumulative reward rsum← 0
8: for each time step t = 1, 2, . . . , T do
9: Compute ϵ using decay schedule

10: Sample random value r ∼ U(0, 1)
11: if r > ϵ then
12: Select action at = argmaxa Q(st, a;ω)
13: else
14: Select random action at ∼ A
15: end if
16: Compute bid bidt = RTP · at
17: Compute probability of bid acceptance:
18: is cleared =
19: cleared action(RTP, bidt, attitude,SOC, ts)
20: if is cleared = 1 then
21: power ← min

(
SOC·capacity

granularity , power max
)

22: RTP← RTP
eff

23: else if is cleared = −1 then
24: power ← −min

(
(1−SOC)·capacity

granularity , power max
)

25: RTP← RTP · eff
26: else
27: power ← 0
28: end if
29: Execute action at
30: Observe reward rt = power · RTP · granularity
31: Compute next state st+1 = (RTP,SOCt+1, tst+1)
32: Store transition (st, at, rt, st+1) in buffer
33: if size of buffer > batchsize then
34: Sample minibatch of batchsize from buffer
35: for each (si, ai, ri, s

′
i) in minibatch do

36: Compute target:
37: yi = ri + γmax

a
Q(s′i, a;ω)

38: Update Q-network ω to minimize loss:

39: L(ω) =
1

batchsize

batchsize∑
i=1

(
yi −Q(si, ai;ω)

)2
40: end for
41: end if
42: Update cumulative reward rsum← rsum+ rt
43: Update state st ← st+1

44: end for
45: Print rsum for episode e
46: end for



2) Static Bidding: To simulate the uncertainty of a bid be-
ing accepted in the training environment, the market dynamics
were approximated using the cleared_action function.
An overview of this mechanism is given in Figure 2.

Fig. 2. Overview of the Bidding Uncertainty Mechanism implemented in the
cleared_action function

This lightweight implementation is more scalable for the
training environment compared to generating the bidding curve
for each time step in evaluation. For each time step, the
real-time price (λRTP

t ) and the proposed bid (λb
t) are inputs.

The deviation from the RTP is computed as ∆λt. The main
engine of this mechanism is a normal distribution N (µ, σ).
We then compute vt = N (∆λt, µ, σ), the value used as a
threshold for acceptance in a uniform distribution U [0, vmax].
The maximum value of the normal distribution is given by:

vmax =
1√
2πσ2

(1)

By generating a random sample s ∼ U [0, vmax] and
checking if it is above or below vt, we can simulate a bid being
accepted or not with uncertainty. The closer the bid is to the
mean of the distribution, the more likely it is to be accepted.
Different attitudes can be adopted by centering the normal
distribution above, below, or around the real-time price. These
attitudes are defined respectively as risky, conservative and
neutral. The term static bidding refers to the the distribution
means remaining constant for each attitude. The distributions
for each attitude are given in Figure 3.

Fig. 3. Normal Distributions of Static Attitudes

Once it is determined if the bid is accepted or not, the
historical average demand profile is used to inform the bidder
if they have been cleared for charge or discharge. Given the
fact the regional demand is predictable and consistent over a
diurnal period, we say that the bidder is cleared for discharge
when dt > 0 and cleared to charge when dt < 0. The demand
profile is given in Figure 4.

Fig. 4. Average Smoothed Daily Demand Profile

3) Dynamic Bidding: In order to take advantage of the
demand profile being known, the dynamic bidders were de-
veloped as an extension of the static bidders. The dynamic
bidders shift the mean of their acceptance distribution based
on the demand, as shown in Figure 5.

Fig. 5. Mean Shifting under Dynamic Attitudes

The conservative bidder bids above the RTP when demand
is low and bids below the RTP when demand is high. This
follows the logic that the bids are more likely to be accepted
in periods of high demand when the bid is slightly below the
RTP and vice versa for periods of low demand. The risky
bidder enacts the opposite of this behavior, and the neutral
bidder remains centered at the RTP for all time steps.

The cleared_action function encodes these steps by
returning 1 if the bid has been accepted to discharge, -1 if
the bid has been accepted to charge, and 0 if the bid was not
accepted.

E. Experimental Design

For this study, two parameters are varied between tests: i)
the proportion of market capacity constituted by honest bidders
and ii) the scaled capacity of the maximum demand with
respect to the total market capacity.

The first parameter is varied to test how each bidding strat-
egy will perform as more energy storage capacity interconnects
to the market. These proportions are {0.0, 0.25, 0.5, 0.75, 0.9}.
The lower the proportion of honest bidders, the higher the
proportion of battery capacity in the grid.

The second parameter is varied to include/exclude certain
bidders from the market and test the performance under
those conditions. These scale factors are {0.8, 1.0, 1.2}. A



Fig. 6. Cumulative profit of each bidding algorithm over 1 year of simulations
under 75% honest bidders and no demand scaling

higher proportion indicates more bids will be cleared for
both charging and discharging and is expected to allow for
greater profits for risky behavior. On the other hand, a lower
proportion would likely very frequently exclude these risky
bidders from the market.

III. RESULTS

Due to the volume of data output from each simulation
under each parameter, only select results are detailed below.

Fig. 6 shows the cumulative profit obtained by each type of
bidder in the year-long simulation. In this simulation, demand
is not scaled at all and 75% of the total market capacity is
made up by honest bidders.

Here, the best performing bidding algorithms are those
trained with both dynamic and static conservative probability
clearing functions with near $500000 in profits each. The
next two best performing algorithms are dynamic neutral and
static risky, respectively, each reaching just under $400000
in profit. The average honest bidder profit is much lower at
approximately $200000 and finally, dynamic risky and static
neutral bidders are the worst performing at only approximately
$30000 each. The following ranking is the same order of
earned profits across all simulations:

1) Static Conservative
2) Dynamic Conservative
3) Dynamic Neutral
4) Static Risky
5) Honest (If in the simulation)
6) Dynamic Risky
7) Static Neutral
Interestingly, this ordering holds exactly for energy cycled,

as displayed in Fig. 7.

Fig. 7. Total energy cycled through each bidder over 1 year of simulations
under 75% honest bidders and no demand scaling

This result indicates that the more a battery participates in a
market, the more profit that battery will make over time. This

Fig. 8. State-of-Charge Distributions for all bidders with 90% honest bidder
composition and demand scaled to 120%. Bidding strategies top to bottom:
dynamic conservative, dynamic neutral, dynamic risky, static conservative,
static neutral, static risky, honest.

result of greater dispatch leading to greater profit is further
analyzed in Section IV from a game-theory perspective.

The energy cycling of these batteries can also be studied
through the distribution of SOC values throughout the simu-
lation, as displayed in Fig. 8.

Another important factor of integrating energy storage into
the grid is total system cost. This is calculated as the total profit
made by all bidders in the system over the entire year and
normalized to the total capacity of the system. Fig. 9 shows
how this varies over all demand scaling values and honest
bidder proportions.

Fig. 9. Normalized system cost in each simulation scenario.



Fig. 10. Bid distributions for charging (left) and discharging (right) times with accepted bids (green), rejected bids (red), and bids when battery capacity is
not available to charge/discharge (gray).

Over every scenario, as the proportion of honest bidders
increase, the normalized system cost decreases. This is due
to the honest bidder, which on-average is one of the least
profitable bidders, constituting larger portions of the overall
profit, an unsurprising result. Similarly, as demand is scaled
up, more energy storage bidders are allowed to participate in
the market at a greater frequency often driving up the price
and actually increasing the overall normalized system costs.
This is likely due to larger participation allowing for higher
bids to set the clearing discharge prices. These results are both
unsurprising but are still good confirmation that the market is
operating in an expected manner.

Perhaps most interestingly, bid price distributions for each
individual bidder can be visualized as in Fig. 10. These
distributions further confirm that greater market participation,
as seen in the dynamic and static conservative bidders, the
greater the profit. A very odd result are the distributions of
dynamic risky and static neutral charge/discharge distributions.
One would expect both the charge and discharge distributions
of static risky to be centered around λb

t = λRTP
t instead of

being negative as seen here. Additionally for the dynamic risky
behavior, the charging bids being below the no difference value
is expected, but the discharge bids following a similar behavior
does not make sense.

IV. DISCUSSION & CONCLUSION

A game theoretic framework can provide insights as to
why the static conservative bidder performs the best across all
simulations. This framework is similar to the mechanism of a
first price auction (FPA), in which the highest bidder wins and
pays the price they bid [13]. In this case, all bidders are paid
the clearing price, which is highest bidding price accepted.

The Nash equilibrium shows that the optimal bidding strat-
egy β in a first price auction with n participants is known to
be:

β(vi) =
n− 1

n
vi (2)

Where vi is the independent valuation of the bidder. Here,
the real-time price is the valuation of energy shared by all
bidders. From the equilibrium in a FPA, we know that the
optimal strategy is to bid slightly below this valuation. This
maps to the strategy of the conservative bidder, which is to
always bid slightly below the real-time price no matter the
demand or time of day. In the case of the market simulation
presented, the conservative bidders follow this strategy and
see that their bids are the most likely to be accepted. Simply
put, the more the bids are accepted, and therefore are able to
maximize revenue.

The paper presents a deep Q-learning based agent that
represents an energy storage system participating in the real-
time electricity market. Through market simulations, it is show
that the the agent trained with the static conservative bidding
strategy performs the best.

Future work would determine if the conservative bidder
still performs the under enhanced battery modeling, training
environment, and market simulations. For battery modeling, a
more accurate physical representation would model ambient
discharge and fixed cost integration. In the training environ-
ment, using a discounted reward function may encourage more
strategic charging behavior over a longer horizon. The day-
ahead-price of electricity could also be tested as an additional
state variable and input into the DQN, since this forecast
is available for real-world market participants. Determining
how these agents impact market behavior would be very
informative for real-world operations. If the agents are price
influencers, then their impact on the price of electricity should
be included in the model. Finally, testing the transferability of
the trained agents to other electricity markets would determine
the robustness of learned bidding behavior.



REFERENCES

[1] D. S. Kirschen and G. Strbac, Fundamentals of power system economics,
2nd ed. Nashville, TN: John Wiley & Sons, Sep. 2018.

[2] RFF, “Us electricity markets 101,” 2022. [Online]. Available:
https://www.rff.org/publications/explainers/us-electricity-markets-101/

[3] ISONE, “How resources are selected and prices are set in the wholesale
energy markets,” 2024. [Online]. Available: https://www.iso-ne.com/
about/what-we-do/how-resources-are-selected-and-prices-are-set

[4] N. Zheng, X. Qin, D. Wu, G. Murtaugh, and B. Xu, “Energy storage
state-of-charge market model,” Electrical Engineering and Systems
Science, Jul. 2022.

[5] D. Krishnamurthy, C. Uckun, Z. Zhou, P. R. Thimmapuram, and
A. Botterud, “Energy storage arbitrage under day-ahead and real-time
price uncertainty,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 84–93,
Jan. 2018.

[6] N. Zheng, J. Jaworski, and B. Xu, “Arbitraging variable efficiency energy
storage using analytical stochastic dynamic programming,” IEEE Trans.
Power Syst., vol. 37, no. 6, pp. 4785–4795, Nov. 2022.

[7] F. Meng, Y. Bai, and J. Jin, “An advanced real-time dispatching strategy
for a distributed energy system based on the reinforcement learning
algorithm,” Renew. Energy, vol. 178, pp. 13–24, Nov. 2021.

[8] H. Wang and B. Zhang, “Energy storage arbitrage in real-time markets
via reinforcement learning,” in 2018 IEEE Power & Energy Society
General Meeting (PESGM). IEEE, Aug. 2018.

[9] T. Zonjee and S. S. Torbaghan, “Energy storage arbitrage in day-ahead
electricity market using deep reinforcement learning,” in 2023 IEEE
Belgrade PowerTech. IEEE, Jun. 2023, pp. 1–7.

[10] B.-C. Lai, W.-Y. Chiu, and Y.-P. Tsai, “Multiagent reinforcement learn-
ing for community energy management to mitigate peak rebounds under
renewable energy uncertainty,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 6, no. 3, pp. 568–579, Jun. 2022.

[11] nmadev, “Caiso-energystorage,” 2024. [Online]. Available: https:
//github.com/nmadev/CAISO-EnergyStorage

[12] CAISO, “Caiso daily energy storage reports,” 2024. [Online]. Available:
https://www.caiso.com/library/daily-energy-storage-reports

[13] Greenwald and Oyakawa, “First-price sealed-bid auctions,” 2017.
[Online]. Available: https://cs.brown.edu/courses/cs1951k/lectures/2020/
first price auctions.pdf

https://www.rff.org/publications/explainers/us-electricity-markets-101/
https://www.iso-ne.com/about/what-we-do/how-resources-are-selected-and-prices-are-set
https://www.iso-ne.com/about/what-we-do/how-resources-are-selected-and-prices-are-set
https://github.com/nmadev/CAISO-EnergyStorage
https://github.com/nmadev/CAISO-EnergyStorage
https://www.caiso.com/library/daily-energy-storage-reports
https://cs.brown.edu/courses/cs1951k/lectures/2020/first_price_auctions.pdf
https://cs.brown.edu/courses/cs1951k/lectures/2020/first_price_auctions.pdf

	Introduction
	Methods
	Energy Storage Formulation
	Market Simulation
	Theory of Market Clearing
	Data Integration

	Honest Bidder
	Deep Q-Learning Bidder
	DQN Network
	Static Bidding
	Dynamic Bidding

	Experimental Design

	Results
	Discussion & Conclusion
	References

